Valencia confirms that Garay has affected ligaments

first_imgIf in the match against Celta there was bad news for those of Mestalla that was the injury of Ezequiel Garay. The defender had to retire when I was about to finish the first half due to discomfort in the knee after having suffered a bad fall in a jump with a Vigo player. The Argentine was tested on the pitch but finally could not continue and the Valencian fans feared the worst.The club has issued a medical report confirming that the center suffers a “ligament injury”, but does not clear doubts about the severity of it, which is “pending evolution”. Ezekiel retired yesterday from Mestalla on crutches and with his entire leg immobilized, Y after a first scan today, you will undergo more tests that determine the extent of your injury in the next few days. But It is inevitable that coach Albert Celades does not think about the vital Champions League crossing against Atalanta, for which Gabriel Paulista is sanctioned and Garay’s figure will gain more relevance than ever. LaLiga Santander* Data updated as of February 2, 2020last_img read more

Continue reading

How Google is making music with artificial intelligence

first_img Fred Bertsch google Q: What examples does Magenta learn from?A: We trained the NSynth algorithm, which uses neural networks to synthesize new sounds, on notes generated by different instruments. The SketchRNN algorithm was trained on millions of drawings from our Quick, Draw! game. Our most recent music algorithm, Performance RNN was trained on classical piano performances captured on a modern player piano [listen below]. I’d like musicians to be able to easily train models on their own musical creations, then have fun with the resulting music, further improving it. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Can computers be creative? That’s a question bordering on the philosophical, but artificial intelligence (AI) can certainly make music and artwork that people find pleasing. Last year, Google launched Magenta, a research project aimed at pushing the limits of what AI can do in the arts. Science spoke with Douglas Eck, the team’s lead in San Francisco, California, about the past, present, and future of creative AI. This interview has been edited for brevity and clarity.Q: How does Magenta compose music?A: Learning is the key. We’re not spending any effort on classical AI approaches, which build intelligence using rules. We’ve tried lots of different machine-learning techniques, including recurrent neural networks, convolutional neural networks, variational methods, adversarial training methods, and reinforcement learning. Explaining all of those buzzwords is too much for a short answer. What I can say is that they’re all different techniques for learning by example to generate something new.  00:0000:0000:00 Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe How Google is making music with artificial intelligence Click to view the privacy policy. Required fields are indicated by an asterisk (*) Q: How has computer composition changed over the years?A: Currently the focus is on algorithms which learn by example, i.e., machine learning, instead of using hard-coded rules. I also think there’s been increased focus on using computers as assistants for human creativity rather than as a replacement technology, such as our work and Sony’s “Daddy’s Car” [a computer-composed song inspired by The Beatles and fleshed out by a human producer].Q: Do the results of computer-generated music ever surprise you?A: Yeah. All the time. I was really surprised at how expressive the short compositions were from Ian Simon and Sageev Oore’s recent Performance RNN algorithm. Because they trained on real performances captured in MIDI on Disklavier pianos, their model was able to generate sequences with realistic timing and dynamics.Q: What else is Magenta doing?A: We did a summer internship around joke telling, but we didn’t generate any funny jokes. We’re also working on image generation and drawing generation [see example below]. In the future, I’d like to look more at areas related to design. Can we provide tools for architects or web page creators?  Email A musician improvises alongside A.I. Duet, software developed in part by Google’s Magenta  By Matthew HutsonAug. 8, 2017 , 3:40 PM Magenta software can learn artistic styles from human paintings and apply them to new images. Q: How do you respond to art that you know comes from a computer?A: When I was on the computer science faculty at University of Montreal [in Canada], I heard some computer music by a music faculty member, Jean Piché. He’d written a program that could generate music somewhat like that of the jazz pianist Keith Jarrett. It wasn’t nearly as engaging as the real Keith Jarrett! But I still really enjoyed it, because programming the algorithm is itself a creative act. I think knowing Jean and attributing this cool program to him made me much more responsive than I would have been otherwise. Q: If abilities once thought to be uniquely human can be aped by an algorithm, should we think differently about them?A: I think differently about chess now that machines can play it well. But I don’t see that chess-playing computers have devalued the game. People still love to play! And computers have become great tools for learning chess. Furthermore, I think it’s interesting to compare and contrast how chess masters approach the game versus how computers solve the problem—visualization and experience versus brute-force search, for example.Q: How might people and machines collaborate to be more creative?A: I think it’s an iterative process. Every new technology that made a difference in art took some time to figure out. I love to think of Magenta like an electric guitar. Rickenbacker and Gibson electrified guitars with the purpose of being loud enough to compete with other instruments onstage. Jimi Hendrix and Joni Mitchell and Marc Ribot and St. Vincent and a thousand other guitarists who pushed the envelope on how this instrument can be played were all using the instrument the wrong way, some said—retuning, distorting, bending strings, playing upside-down, using effects pedals, etc. No matter how fast machine learning advances in terms of generative models, artists will work faster to push the boundaries of what’s possible there, too.last_img read more

Continue reading